PI:Alex LAMB
研究方向:开发能够快速获取知识并适应新环境的学习系统
其突出贡献包括:
1.提出从观测数据直接推断潜在状态变量及其类型的方法,并为通过当前与未来观测预测动作的多步逆向模型提供理论保证与实证结果——该工作对离线强化学习和基于模型的连续控制极具价值;
2.阐明如何通过构建合成训练样本实现有限数据下的最优学习;
3.提出流形混合方法(Manifold Mixup),通过合成样本训练提升数据效率,在少样本学习场景中取得卓越性能。
这些成果受到学术界广泛关注并产生重大产业影响。Alex Lamb博士已在顶级AI会议(NeurIPS、ICML、ICLR等)发表论文40余篇,Google Scholar引用约1万次,于ICML 2023主讲专题报告,并担任NeurIPS、ICLR、ICML、AAAI、IJCAI及UAI审稿人。
Conference and Journal Publications:
▪ Recurrent Independent Mechanisms. Anirudh Goyal, Alex Lamb, Shagun Sodhani, Jordan Hoffmann, Sergey Levine, Yoshua Bengio, Bernhard Scholkopf. ICLR 2021 Spotlight Oral.
▪ Neural Function Modules with Sparse Arguments: A Dynamic Approach to IntegratingInformation across Layers. Alex Lamb, Anirudh Goyal, Agnieszka Słowik, Michael Mozer,Philippe Beaudoin, Yoshua Bengio. AISTATS 2021. 29.8% Acceptance Rate
▪ GraphMix: Regularized Training of Graph Neural Networks for Semi-Supervised Learning. Vikas Verma, Meng Qu, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang. AAAI 2021.
▪ Combining Top-Down and Bottom-Up Signals with Attention over Modules. Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael Mozer, Yoshua Bengio. ICML 2020. 21.8% Acceptance Rate
▪ KuroNet: Regularized Residual U-Nets for End-to-End Kuzushiji Character Recognition. Alex Lamb, Tarin Clanuwat, Asanobu Kitamoto. Springer-Nature Computer Science 2020.
▪ KaoKore: A Pre-modern Japanese Art Facial Expression Dataset. Yingtao Tian, Chikahiko Suzuki, Tarin Clanuwat, Mikel Bober-Irizar, Alex Lamb, Asanobu Kitamoto. ICCC 2020.
▪ SketchTransfer: A New Dataset for Exploring Detail-Invariance and the Abstractions Learned by Deep Networks. Alex Lamb, Sherjil Ozair, Vikas Verma, David Ha. WACV 2020. 34.6% Acceptance Rate
▪ On Adversarial Mixup Resynthesis. Chris Beckham, Sina Honari, Alex Lamb, Vikas Verma, Farnoosh Ghadiri, R. Devon Hjelm, Christopher Pal. NeurIPS 2019. 21.2% Acceptance Rate
▪ State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations. Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis Mitliagkas, Denis Kazakov, Yoshua Bengio, Michael C Mozer. ICML 2019. Long Oral, 5.0% Acceptance Rate
▪ Manifold Mixup: Learning Better Representations by Interpolating Hidden States. Alex Lamb*, Vikas Verma*, Christopher Beckham, Amir Najafi, Aaron Courville, Ioannis Mitliagkas, David Lopez-Paz, Yoshua Bengio. ICML 2019. 22.6% Acceptance Rate
▪ Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing too much Accuracy. Alex Lamb*, Vikas Verma*, David Lopez-Paz. AiSec 2019. 23.8% Acceptance Rate
▪ KuroNet: Pre-Modern Japanese Kuzushiji Character Recognition with Deep Learning. Alex Lamb*, Tarin Clanuwat*, Asanobu Kitamoto. ICDAR 2019. Oral, 12.9% Acceptance Rate
▪ Interpolation Consistency Training for Semi-Supervised Learning. Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, David Lopez-Paz. IJCAI 2019. 17.9% Acceptance Rate
▪ End-to-End Pre-Modern Japanese Character (Kuzushiji) Spotting with Deep Learning. Tarin Clanuwat, Alex Lamb, Asanobu Kitamoto. Information Processing Society of Japan Conference on Digital Humanities 2018. Best Paper Award (1/60 accepted papers)
▪ GibbsNet: Iterative Adversarial Inference for Deep Graphical Models. Alex Lamb, Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron Courville, Yoshua Bengio. NeurIPS 2017
▪ Adversarially Learned Inference. Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, Aaron Courville. ICLR 2017
▪ Professor Forcing: A New Algorithm for Training Recurrent Networks. Alex Lamb*, Anirudh Goyal*, Ying Zhang, Saizheng Zhang, Aaron Courville, Yoshua Bengio. NeurIPS 2016
▪ Separating Fact from Fear: Tracking Flu Infections on Twitter. Alex Lamb, Michael J. Paul, Mark Dredze. NAACL 2013
Pre-print and Workshop Papers:
▪ Deep Learning for Classical Japanese Literature. Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, David Ha. NeurIPS Creativity Workshop 2019.
▪ Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations. Alex Lamb, Jonathan Binas, Anirudh Goyal, Dzmitry Serdyuk, Sandeep Subramanian, Ioannis Mitliagkas, Yoshua Bengio. Arxiv.
▪ Learning Generative Models with Locally Disentangled Latent Factors. Alex Lamb*, Brady Neal*, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Ioannis Mitliagkas. Arxiv.
▪ ACtuAL: Actor-Critic Under Adversarial Learning. Anirudh Goyal, Nan Rosemary Ke, Alex Lamb, Devon Hjelm, Chris Pal, Joelle Pineau, Yoshua Bengio. Arxiv.
▪ Demand Forecasting Via Direct Quantile Loss Optimization. Kari Torkkola, Ru He, Wen-Yu Hua, Alex Lamb, Murali Balakrishnan Narayanaswamy, Zhihao Cen. US Patent. P36059-US.
▪ Discriminative Regularization for Generative Models. Alex Lamb, Vincent Dumoulin, Aaron Courville. CVPR Deepvision Workshop 2016.
▪ Variance Reduction in SGD by Distributed Importance Sampling. Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, Yoshua Bengio. ICLR Workshop 2016.
▪ Investigating Twitter as a Source for Studying Behavioral Responses to Epidemics. Alex Lamb, Michael J. Paul, Mark Dredze. AAAI Fall Symposium on Information Retrieval and Knowledge Discovery in Biomedical Text 2012.